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A particular case of the solution first obtained by Goriachev [Ll] and then generalized by 

Chaplygin 121 is considered. The solution in question is analytically complete @]. How- 
ever, it is very difficult to describe the motion of a body in space by means of the for- 
mulas expressing the solution of the Goriacbev-Chaplygin problem. The authors of @] 

and [4] extended the study of body motion, but to the case of rapid rotations of the body 

only. 
We were interested in obtaining a direct kinematic interpretation in this solution on 

the basis of equations presented in [5] such as that obtained for other particular solutions 

[6-81 of the problem of motion of a body with a fixed point. 

2. The initial expreaaionr, The case of integrability of the equations of 
motion of a solid about a fixed point considered here was obtained under the conditions 

A, = A, = 4A,, r2 = zQ = 0. By virtue of these conditions the equations of motion can 
be written as 

4dol=300 4dozz---Bo~ol-aT”, _._=ay’ 
dt 

2 3, 
dt 

dm , 
dt 

(1.1) 

dy = ogy’ _ w2y” dy" 
dt 

, dy’ = col\i” 
dt 

- WY, - = 027 - wf' 

dt 
(1.2) 

Let us convert the dimensionless variabies in Eqs, (1.1). (1.2). We set 

o1 = yr;(&r, o2 = l/&&J, Ws’T; l/Y&~, t = j$ (1.3) 

Substituting (1.3) into Eqs. (1.1). (1.2) and omitting the primes identifying the dlmen- 

tionless variables, we obtain 

(1.4) 

Equations (1.2) remain unchanged. 
The integrals of system (I, 4), (1.2) are 

4 (WI% + o& + 032 = 2y + k, 4 (0,y + W,Y’) + @3Y" = 0 u .5) 
y2 + y)S + y”2 = 1) 603 (co12 + 022) + w,y = go 

Let us take o1 as the independent variable in terms of which we can express the remain- 

lng variables 02, ws, ‘I, r, y’, y”. We assume that the constant g, is equal to zero. Con- 
verting to a differentiation with respect to o1 in the second equation of system (1.4) with 

the aid of the first equation of this system and recalling the integral wj (ml2 + oa2) -!- 
+ o,y” = 0, we obtain 3d In (ox2 + ot2) = 2d In o1 

Integrating this equation, we find that 

O.&z= - Wl‘J $ bols’a (l.6) 

Here b is an arbitrary positive constant different from zero. 
Substituting 0~2 from formula (1.6) into relations (1.5), we obtain from the latter the 

3.075 
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expressions for tigry, y’, y” as functions of o1 (requiring that the parameters 6 and k satis- 
fy the condition 16 b3 - ke + 4 == 0) 

(1.7) 

(1.8) 

(1.9) 
(1.10) 

The dependence of ~,on t can be determined from the first equation of system (1.4) 
together with expressions (1.6), (1.7). 

do1 3 _ zzz - or2/s [(b - 
dt 2 l/c 

o+) (1/4 b3 + 1~1’ a - 4b”)]‘12 (1.11) 

For convenience in investigating the solution of (1.6)-(1.10) we introduce the new 

variable u by means of the formula 
‘,I1 -= 0 l/a 

Relations (1.6)-(1.10) and Eq. (1.11) can be written as 

0% = V/5 (5*3 - SC), 03 = 25* I/?$-% (G - G*) 

y = 25*9 (25% - e*s - a*%) / 3*, 7’ z 25*25*-1(2G - 5,) 1/ts*3 - G’L 

r” = - ‘i S*3 r/l/, (G -IS*) G*-l 

ds / dt = v&s*-’ (rF - a2) (B - G*) 

(n is a elliptic function of time). 
Here 

(1.12) 

(1.13) 

(1.14) 

(1.15, 

(1.16) 

(1.17) 

It follows from this that o* < u* for all positive values of the parameter b. Solution 

(1.13)-Q. 15) has mechanical meaning as the variable 
varies in the range 

u* < a< q* (2.18) 

2. The moving hodogrrph. The moving 
hodograph is the trajectory of the extremity of the 
angular velocity vector in a coordinate system rigidly 
attached to the body. In our case the moving hodograph 

is the line of intersection of oylinders (1.6). (1.7). The 
generatrices of the first cylinder are parallel to the 

axis 00, ; those of the second cylinder are parallel 

Fig. 1 to the axis 00,. These cylinders intersect in the inter- 

vals ol* < or < 0r*, - or* -S or < - ol*. We can 
obtain the values of or* and or* from formula (1.12). by substituting into it the values 
of IS* and u* , respectively, from expressions (1.17). Figure 1 shows a part of the moving 
hodograph (the part corresponding to the interval ol* < or < ol* ). The other part 
of the moving hodograph (corresponding to - (0 r* < oi < - or*) is symmetric to the 
curve shown with respect to the plane Oo,w,. 

To be specific, let us trace the motion of the extremity of the angular velocity vector 
(the point M) along the curve shown in Fig. 1. We take 6, as the initial value of the 
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variable . From (1.12)-(1.15) we infer that at such an instant w1 = 01~~ %= 6, Y’ = 9. 

The latter means that at the initial instant the third coordinate axis is horizontal in fixed 
space. bet the point M be in position I (Fig. 1) at the initial instant o2 > 0 . Substitut- 

ing y’ from relations (I. 14) into the third equation of system (1.4), we note that dws / dt> 

> 0 for o = IS,. Hence, the point 111 shifts from position I towards position 2, which it 

reaches in the finite time given by 0* 

t, = 
s 

vr;;: ds 

as determined from Eq. (1.16). 

‘J, T/ 2%(,*2 - 3’) (a - 5*j- 

At point 2 we have w1 = c+*, o2 = 0, a3 > 0, y’ = 0 (the second coordinate axis 
of the moving system is horizontal). Substituting ol, w3, y" from relations (1.12). (Ll.3), 
(1.15) into the second equation of system (1.4), we find that do, I dt < 0 for CY = o*. 
Hence, the point M moves from position 2 towards position 3, arriving there in the same 
time t,. As above we can show that the point M travels from position 3 to position 4, 
and then to position 1, The process is then repeated. The point M completes its circuit 

of the moving hodograph in the time 4t*. 

3. The fixed hodogrrph. Intetprstrtion of the body matiou, 
The fixed hodograph is the trajectory of the extremity of the angular velocity vector in 

fixed space. Following [5]. we impose a cylindrical coordinate system of fixed space. 

The angular velocity vectoi is defined by the components a)<, oP, CC which can be deter- 
mined by the relations [5] or: = oly + o,‘l,t +_ o,y~f (3.1) 

6$ = (o,y”- o,y’)2 _t (0,y - o,,y”)2 + (0,y’ - ozyl” (3.2) 

2da= ?+ 
7’ Y” 

@P da 01 02 03 (3.3) 
doI /’ do doz / da dos / da 

Let us substitute expressions (1.12)-(1.X5) into Eqs. (3.1)-(3.3), 

ol: = - 65,~lo*’ 1/6 (5 - G*) (3.4) 

w2=36s 
P 

*-2 55” 5 (5 - 31) (Z2 - 5) (3.5) 

(3.6) 

where 

-‘I.3 = r / 18 ‘3*@-” [ 2 ff .+ Qa*y _c r/4 + 9Ci** 1 (3.7) 

63 = l/3 (36, + 1/3 (46’2 - 6*2)), 64 =; l/6 (- 35, + 1/3 (4a** - a,?,) (3.6) 

Let us investigate the meridian of the surface of revolution defined by Eqs. (3.4). (3.5) 

in the plane Oo,o,: as u varies in interval (1.18). 

From relations (3.~4)~ (3.5) we have 

dwc (3G - 
do,=- 

3,) I+* - 0) (5 - 52) 
3 (5 - 6s) (55 - 0) (3.9) 

Here 
%6 = ‘/s$5*a*-s 14 (1 + 95** ) * 11324 s*** + 99 CX** + 16 ] (3.10) 

Comparing the quantities o1 and o2 from (3.7) with 5, and a*, we find that the inequal- 
ities o< CT< u,, CQ > G* hold for all values of the parameter 5 > 9. Hence, 0: does 
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not vanish in interval (1.18). From formula (3.9) we infer that the tangent to the meri- 
dian is not parallel to the axis 00, anywhere in the interval [a,, o*]. 

V 

Since u = 0 is t!ie root of the equation I oi= 0 

I? and since 0 < a2 < G,, it follows that the root as of the 

equation do, / da = 0 lies between zero and 0”. 

u The value of o5 from (3.10) also lies outside interval 

/ 
“p 

(1.18) for all b > 0. In order to show this we note, first 

US 

of all, that o;, > a+. Next, substituting the values of a, and 
o’ from (1.17) into the denominator of formula (3.9), we 

Fig. 2 find that do, Ida > 0 for il = IS*, o*. Hence, up increases 
in interval (1.18) and oj > o*. Moreover, Eq.(3.9)implies 

that the derivatives dot ld5p and d20c / doi are negative as o varies in (1.18). 

The meridian is of the form shown in Fig. 2. Rotating this curve about the axis OoL, 
we obtain that part of the surface of revolution on which the fixed hodograph lies. 

let us investigate the projection of the fixed hodograph on the horizontal plane of the 

fixed coordinate system 0511. To this end we trace the variation of the functions oP and 
a as functions of a in this plane. We have already shown that as 6 varies from o, to o*; 
the function oP increases from oP (o*) to o, (a*;. The projection of the fixed hodograph 

lies between the two circles of radii o, (a*). (11~ (z*!. 

,I--- -\ 
,/ ,’ ‘\ 

<i 

a b 
E’ 
Fig. 3 

Let us denote by 0 the angle between the direction of the radius o. and the tangent 

to the projection at the given point, measures counterclockwise, 
0 LJa 

tgo =-e 

Substituting expressions (3.5). (3.6) into this equation we find that in interval (1.18) 

the projection of the fixed hodograph on the plane does not meet the circles o,, = const 
at a right angle; moreover, it approaches and osculates the boundary circles (I)~ (a*), 

OP (a*) . 
We choose the axis OE in such a way that a = 0 for o = J*. Since cr* is the minimum 

value of the variable, then o increases with time, so that the radical in Eq. (1.16) is posi- 
tive in this case. Recalling this fact, we infer from formula (3.6) that 

* 

c lfG((6 - G3)(5 + 5,)ds 
a= 

L :j5*s(r31- 
or 

5)(3 - 5%) I/%(5*2- @)(a -a*) 
(3.11) 

From Eqs. (1.16), (3.6) we infer that the sign of the derivative da / dt depends on the 
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sign of the expression o .- os. We note that for all b > 0 the root us lies between the 
boundary values u* and o*. Hence, the difference (3 - og is negative at the initiai instant. 

The angle a begins to decrease. This continues until the variable o reaches the value 

(J3. Once& / dt > 0 (a - us > 0), the angle begins to increase to the value a,, which 

we obtain from (3.11) when the upper limit is equal to u*. 
Computing integral (3.11) numerically, we conclude that r0 differs for different values 

of b: when b satisfies the inequality 0 < b < b* z 0.653182 we have uo < 0; for b = b* 
we have 20 = 0; for b > b* we have uo > 0. Thus, as a varies from 6, to a* the projec- 

tion of the moving hodograph constitutes part of the curve shown in Fig. 3 : 3a for b < b*, 

3b for b = b*, 3c for b > b* lying between points 1 and 2. 

On reaching the value u* the variable CJ must hegin to decrease, which means that 

da / dt < 0, ~IKI cousequently the radical 1/2( u ** - (~2) ((s - a,) in formulas (1. 6j, (3.11) 
changed sign. As u varies (from u* t<j a,) the functions tipand da / dt assume their pre- 

vious values in the opposite direction. The portion of the projection which corresponds 
to this time interval is symmetric to the curve investigated above with respccc to the 

ray aO. In Fig. 3 it lies between points 2 and 3. In the same way we can construct the 

projection of the fixed hodograph on the plane Ocq with further variation of u (Fig. 3). 
The cylinder with vertical generatrices whose directrix is the curve shown in Fig. 3 

intersects the surface of revolution to yield the fixed hodograph of angular velocity 

a b <i C 

Fig. 4 

The same figure shows the position of the moving axoid on the fixed one; this position 
can be readily determined by considering the indicated directions of motion of the extre- 
mity of the angular velocity vector along the moving and fixed hodographs. Rolling the 

moving hodograph over the fixed hodograph in the direction indicated by the arrow, we 

obtain the picture of motion of the body. 

The character of motion of the body clearly depends on the values of the parameter 
b: if b < b*, the body precesses clockwise about the vertical (Fig. 4a) ; for b = b* it 

executes a periodic motion and the moving and fixed hodographs are closed curves(Fig. 

4b); if b > b*, the body precesses counterclockwise about the vertical (Fig. 4~). 
The author is grateful to P. V. Kharlamov for supervising the present study. 
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The equations of motion of a heavy gyroscope on gimbals are integrated for an arbitrary 

position of the center of mass of the gyro housing. 
In 1958 Chetaev [l] investigated the motion of a heavy gyro on gimbals in the case 

of vertical position of the outer gimbal axis of rotation (output axis). The center of 
gravity of the housing and gyro was assumed to coincide with the axis of symmetry of 

the gyro. Chetaev reduced the problem of integrating the equations of motion to quad- 
ratures. These quadratures can be readily extended to the case where the gyroscope is 
acted along the axis of rotation of its housing by a moment of external forces which is 

an arbitrary integrable function of the angle of nutation. 
This problem was considered in p] under certain assumptions concerning the moments 

of inertia of the system elements and for certain specific initial data. 

1. Let us consider a gyro on gimbals under the assumption that the fixed axis of rota- 
tion of the outer gimbal is in vertical position. We introduce two right-handed coordi- 

nate systems with a common origin at a fixed point 0 of the gyroscope. The axis 5, of 
the fixed coordinate system <i, &, E3 is directed vertically upward along the axis of 

rotation of the outer gimbal; the axes <i and 5% lie in the horizontal plane. The axes 
nr and 71~ of the moving coordinate system thq2n3 (which is rigidly attached to the gyro- 
scope housing) are directed along the axis of rotation of the housing and along the axis 
of symmetry of the gyro, respectively. The position of the system under consideration 
in the space &&E3 is defined by the three Euler angles, namely the angle of precession 
$, the angle of nutation 6 , and the angle of proper rotation q of the gyro relative to the 


